$7^{\text {th }}$ Grade TEKS Readiness Focus

TEKS 7.6I determine experimental and theoretical probabilities related to simple and compound events using data and sample spaces.

Activity Directions:

Items Needed: Probability activity, scissors, glue, number cubes, nickels, quarters, spinners, paper clips to make spinner

1. Distribute the probability activity to partner groups.
2. Students should cut apart sample space cards and frequency table cards found at the end of the activity. Students should glue the cards to the correct scenario. (An example of a completed activity is shown below.)
3. Then, each student in the partner group will conduct the experiment independently and record his/her data in two form os ir ample space and in a frequency table. Students should compare the t perime tal results to the theoretical probabilities.
4. Have students practice questions o ded t TEi 7.61.

\qquad
TEKS 7.6I determine experimental and theoretical probabilities related to simple and compound events using data and sample spaces.

TEKS 7.6I Mini-Assessment

1. A number cube with faces labeled $1-6$ was rolled 40 times. Each time the number cube was rolled, the number showing on the top face was recorded. The table shows the results.
Results

Number on Top Face of Cube	1	2	3	4	5	6
Frequency	6	5	8	6	8	7

Based on these results, what is the experimental probability that the next time the cube is rolled it will land with 3 or 4 showing on the top face?
(A) $\frac{7}{20}$
(C) $\frac{1}{5}$
(B) $\frac{7}{40}$
(D) $\frac{3}{20}$
3. James has ten marbles. He will rand rns select 2 marbles from the group one a a time, without replacement.

What is the probability that James will select a striped marble both times?
(A) $\frac{4}{25}$
(B) $\frac{3}{25}$
(C) $\frac{2}{5}$
(D) $\frac{2}{15}$

2. Fred has a white number cube and a black number cube. The faces of the cubes are numbered 1 through 6. Fred will roll each cube one time. What is the theoretical probability that the white cube will land on an odd number, and the black cube will land on a number less than 5 ?
(A) $\frac{1}{36}$
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$

4. Maya will toss two quarters.

What is the probability in decimal form that both coins will land heads up?

Enter your answer in the space provided.

5. A spinner with 8 equal sections is shown.

What is the probability in decimal form of spinning a 1,5 , or 7 ?

Enter your answer in the space provided.
\square
6. A bag contains colored tiles.

- 7 tiles are red
- 9 tiles are green
- 4 tiles are blue

A tile will be selected at random from the bag. What is the probability that the tile selected will NOT be blue?
(A) $\frac{7}{20}$
(B) $\frac{4}{5}$
(C) $\frac{1}{5}$
(D) $\frac{3}{4}$
7. Kelvin has two number cubes. The faces of each number cube are numbered 1 to Kelvin rolled the number cubes and recorded the number showing on the top face of each num a rese The results are shown below.

2,1	5,6	1,2	4,5	0,4	3,1
2,3	6,4	3,5	1,1	5,6	2,5
1,5	4,1	5,0	3,	6,4	4,2
4,4	6,1	2,2	5,2	1,5	3,3

Based on these results, which sta entsts are true?
Select TWO correct ansers
The probability of the next roll landing on a 5 on one number cube and landing on a 3 on the other number cube is $\frac{1}{24}$.The probability of the next roll landing on a 2 on one number cube and landing on a 3 on the other number cube is $\frac{1}{6}$.The probability of the next roll landing on a 4 on both number cubes is $\frac{1}{36}$.The probability of the next roll landing on an even number on both number cubes is $\frac{5}{24}$.
\square The probability of the next roll landing on numbers less than 4 on both number cubes is $\frac{1}{4}$.
8. Mr. Lanz has a bag of coins. The bag contains -

- 5 quarters
- 1 dime
- 3 nickels
- 6 pennies

Mr. Lanz will randomly select 2 coins from the bag one at a time without replacement. What is the probability he will select a penny first and then a quarter?
(A) $\frac{2}{15}$
(B) $\frac{11}{15}$
(C) $\frac{1}{7}$
(D) $\frac{11}{29}$
9. A game spinner divided into 6 equal sections is shew.

omly select 2 coins
select a penny first
r divided into 6 equal
5. Sandra and Marcy are playing a game by rolling two number cubes with faces numbered 1 through 6 .

- Sandra gets a point when the product of the two numbers on the cubes is an odd number.
- Marcy gets a point when the product of the numbers is less than six.

The table below shows all possible products for the numbers on the cubes.

Product of Two Number Cubes							
	Cube 1						
		1	2	3	4	5	6
	1	1	2	3	4	5	6
\sim	2	2	4	6	8	10	12
$\stackrel{0}{0}$	3	3	6	9	12	15	18
\checkmark	4	4	8	12	16	20	24
	5	5	10	15	20	25	30
	6	6	12	18	24	30	36

Which player is most likely to get a point on the first roll?
(A) Sandra is more likely to get a point, because $\frac{18}{-0}>\frac{0}{36}$.
(B) Marcy is more likely to get a oir, Lecause $\frac{10}{36}>\frac{9}{36}$.
(C) Sandra is more likely 0 et a point, because $\frac{9}{36}>\frac{8}{36}$.
(D) The girls are equally likely to get a point, because $\frac{10}{36}=\frac{10}{36}$.

