$3^{\text {rd }}$ Grade TEKS Readiness Focus

TEKS 3.3H compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models.

Activity Directions:

Items Needed: recording sheet for each partner group

1. Teacher will call out a randomized list of 4 fractions. Suggestions for rounds are shown below.
2. Working as a team, students will write each fraction on a recording sheet, attempting to place the fractions in order by size. Onre a fraction is written it may not be moved or changed.
3. The class will play 5 rounds. The winning team in ne tea. who can complete the greatest number of rounds corre tly.
4. Practice questions coded to TEKS 3.3H.

Teacher Notes: Have students use © ayon marken, or pens to record fractions.

Call out each round in re idom or r. The list shows the fractions in the correct arrangement.

Round 1 Numerators the same	$\overline{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{10}$
Round 2 Denominators the same	$\frac{7}{8}$	$\frac{5}{8}$	$\frac{2}{8}$	$\frac{1}{8}$
Round 3 Numerators the same	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{1}{5}$	$\frac{1}{3}$
Round 4 Denominators the same	$\frac{1}{15}$	$\frac{4}{15}$	$\frac{9}{15}$	$\frac{14}{15}$
Round 5 Numerators the same	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1,000}$	$\frac{1}{10,000}$

©2023 Math GPS, LLC
All rights reserved.
\qquad Date \qquad
TEKS 3.3H compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models.

TEKS 3.3H Mini-Assessment

1. The models are the same size. Each model is divided into equal-size parts and is shaded to represent a fraction.

Choose the correct answer from each drop-down menu to complete the statement
\qquad because 4 out of 6 parts is \qquad than six out of six pa is.
$\square \frac{4}{6}>\frac{6}{6}$
$\square \frac{4}{6}<\frac{6}{6}$
\square
$\square \frac{1}{6}<\frac{6}{6}$
2. Fraction strips are shown.

Which comparison is true?
(A) $\frac{1}{8}>\frac{1}{3}$
(B) $\frac{1}{6}=\frac{2}{6}$
(C) $\frac{1}{6}<\frac{1}{4}$
(D) $\frac{1}{2}<\frac{1}{3}$
3. The number lines model two different fractions.

Compare the two fractions. Use $>,<$, or $=$.
Write the comparison statement in the box.

4. The models shown are the same size and are each divided into equal-size parts. The models are shaded to represent two fractions.

Choose the correct answer from each drop-down menu to complete the statement.
\qquad because thirds are \qquad than sixths.
$\square \frac{2}{3}>\frac{2}{6}$
$\square \frac{2}{3}<\frac{2}{6}$
,

5. The distance between Boerne, Texas and Comfort, Texas is 16 m es. Karly jogged one-third of the distance and walked two-thirds of the distance. The nu inber line shows Karly's travel.

Which of the following is true?
(A) $\frac{1}{3}<\frac{2}{3}$, because 1 is less than 2 , and the denominators of the fractions are equal.
(B) $\frac{1}{3}=\frac{2}{3}$, because the denominators are equal.
(C) $\frac{1}{3}>\frac{2}{3}$, because $\frac{2}{3}$ of the distance is twice as much as $\frac{1}{3}$ of the distance.
(D) None of the statements are true.

6. Fraction strips are shown.

Which comparison and explanation are true?
(A) $\frac{3}{8}>\frac{3}{6}$, because eighths are larger than sixths
(B) $\frac{3}{8}>\frac{3}{6}$, because sixths are larger than eighths
(C) $\frac{3}{8}<\frac{3}{6}$, because eighths are larger than sixths
(D) $\frac{3}{8}<\frac{3}{6}$, because sixths are larger than eighths
7. Leah, Tia and Mia shared a pepperoni pizzá

- Leah ate $\frac{1}{2}$ of the pizza,
- Tia ate $\frac{1}{4}$ of the pizza,
- and Mia ate $\frac{1}{4}$ of the pizza.

Compare $\frac{1}{2}$ and $\frac{1}{4}$. Use $>,<$, or $=$.
Write the comparison statement in the box.

8. Kai measured the length of two beetles.

- Beetle A was $\frac{1}{2}$ inch long.
- Beetle B was $\frac{2}{2}$ inches long.

Which statement is true?
(A)

The length of Beetle A is greater than the length of Beetle B.
(B)

The length of Beetle B is greater than the length of Beetle A.
(C)

The length of Beetle A is equal to the length of Beetle B.
(D) The beetles were not measured correctly.
10. The models shown are the same size and re eall arvided into equal parts. The models are shaded to show two fractions.

Based on the models, which statement is true?
(A) $\frac{1}{3}$ is less than $\frac{2}{8}$, because 1 shaded part out of 3 parts is less than 2 shaded parts out of 8 parts
(B) $\frac{2}{3}$ is greater than $\frac{2}{8}$, because 2 shaded parts out of 3 parts is greater than 2 shaded parts out of 8 parts
(C) $\frac{1}{3}$ is greater than $\frac{6}{8}$, because thirds are larger than eighths
(D) $\frac{2}{3}$ is less than $\frac{2}{8}$, because thirds are smaller than eighths

