1. Adult tickets to the museum cost $\$ 6$. Tickets for children cost $\$ 4$. If a family buys 3 adult tickets and 2 child tickets, what will be the total spent on tickets? \qquad

Write three number sentences that can be used to show each step of a solution process.

Number Sentences

TEKS 3.5A
3. Use a centimeter ruler to measure the sides of the rectangle. Label the sides.

What is the perimeter of the figure?
\qquad

TEKS 3.7B
2. The table shows the estimated population of three Texas cities in 2022, according to the Census Bureau.

City Population

City	Number of People
Cedar Park	87,139
Harlingen	65,100
Victoria	92,752

Write the values in order $\mathrm{f}_{\mathrm{\prime}} \mathrm{~m} \mathrm{l}$ ast to greatest.

TEKS 3.2D
F. A circle divided into fair shares is shown below.

Label each piece as a fraction.

Are the pieces congruent? \qquad
What fraction names each piece? \qquad
How many pieces equal 1 whole circle? \qquad
TEKS 3.3C

1. Melissa separated figures into two sets. The figures in Set A have a common characteristic. The figures in Set B do not have the characteristic.

What characteristic do the figures in Set A have in common?
2. The dimensions of two rectangles are shown below. Find the perimeter of each rectangle.

What is net fterence in the perimeters?

TEKS 3.7B
3. Rhonda counts the calories she eats or drinks at every meal when she trains to run in marat'ons. Today Rhonda had 292 calories fc 'reakfast and 685 calories for lunch. Her goal is to at or drink 1,000 calories before her aftnrnoon v.urkout. How many more calories must F hs, inda consume to meet her goal?

Solution: \qquad
\qquad
TEKS 3.4A
4. Reagan is a nurse.

- She worked with patients on Floor 1 for 20 minutes.
- She worked with patients on Floor 2 for 36 minutes.
- She worked with patients on Floor 5 for 25 minutes.

What was the total amount of time Reagan spent working with patients on Floors 1, 2, and 5?

Solution: \qquad
TEKS 3.7C

1. A frequency table shows the number of days each week a group of third graders ride their bikes. Create a dot plot to summarize the data.

Bicycle Riding	
Number of Days	Tally
0	
1	\|III
2	TNX IIII
3	WL MKK
4	WU1 III
5	INX TNX
6	INE I
7	TW II

Bicycle Riding

TEKS 3.8A
2. How many third graders rode their bikes more that 7 . mrs per week?

Solution: \qquad
3. What is the area of the rectang

$$
\square=1 \text { square unit }
$$

The area of the rectangle equals \qquad
\qquad .
4. Which has the smallest perimeter? Circle your answer.

A square with sides that measure 4 inches each.

Perimeter: \qquad Perimeter: \qquad
A triangle with congruent sides that measure 5 inches each.

Perimeter: \qquad

Perimeter: \qquad
10. Mr. Irving teaches science. He teaches 48 boys and 56 girls. Students will be grouped in teams of 8 to complete a STEM project. How many groups will be formed from the students in Mr. Irving's classes?

Enter your answer in the box.

TEKS 3.4K
11. Nathan put figures into groups based on certain attributes. Sometimes he put figures in more than one group.
Nathan's Figures

Group	Attribute
1	Three-dimensional
2	Has 2 congr ient ba es
3	Has no edges

Which statements are true?
Select TWO correct answers.
\square A cylinder can belong in Group 1, G. rup 2, and Group 3.
\square A sphere can only belong Gr up 3.
\square A cone can belons in (rou) 1 and Group 3.
\square A rectangul ris n can belong in Group 1, Group 2, and Group 3.
TEKS 3.6A
12. A golfe, vlar ed 7 tournaments last summer. The golfer paid $\$ 75$ to play in each tournament. What was the total amount the golfer paid to play in these 7 tournaments in dollars?

Enter your answer in the box.
\square
22. Ms. Garcia owns a bakery. The graph shows the number of doughnuts sold each day for one week.

What is the total number of doughnuts sold on Thu sd yr, Friday, and Saturday?
Enter your answer in the box.
\square
23. The Robinson family rdere, ice cream cones.

Which expression represents the fraction of the order that has 2 scoops of ice cream?
(A) $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$
(B) $\frac{5}{1}+\frac{5}{1}+\frac{5}{1}$
(C) $\frac{1}{5}+\frac{1}{5}$
(D) $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$

